Interface dynamics for quasi-stationary Stefan problem

نویسندگان

  • Roman Andrushkiw
  • V. V. Gafiychuk
  • B. Y. Datsko
چکیده

We investigate the interface dynamics in Laplacian growth model, using the conformal mapping technique. Starting from the governing equation obtained by B.Shraiman and D.Bensimon, we derive intergro-differential evolution equation of interphase dynamics. It is shown that such representation of the conformal mapping technique is convenient for computer simulations of the quasi-stationary Stefan problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classical solutions for the quasi-stationary Stefan problem with surface tension

We show that the quasi-stationary two-phase Stefan problem with surface tension has a unique smooth local solution. In addition we show that smooth solutions exist globally, provided that the initial interface is close to a sphere and no heat is supplied or withdrawn.

متن کامل

UNIQUENESS OF SOLUTION FOR A CLASS OF STEFAN PROBLEMS

This paper deals with a theoretical mathematical analysis of one-dimensional solidification problem, in which kinetic undercooling is incorporated into the This temperature condition at the interface. A model problem with nonlinear kinetic law is considered. We prove a local result intimate for the uniqueness of solution of the corresponding free boundary problem.

متن کامل

A study of a Stefan problem governed with space–time fractional derivatives

This paper presents a fractional mathematical model of a one-dimensional phase-change problem (Stefan problem) with a variable latent-heat (a power function of position). This model includes space–time fractional derivatives in the Caputo sense and time-dependent surface-heat flux. An approximate solution of this model is obtained by using the optimal homotopy asymptotic method to find the solu...

متن کامل

THE STEFAN PROBLEM WITH KINETIC FUNCTIONS AT THE FREE BOUNDARY

This paper considers a class of one-dimensional solidification problem in which kinetic undercooling is incorporated into the temperature condition at the interface. A model problem with nonlinear kinetic law is considered. The main result is an existence theorem. The mathematical effects of the kinetic term are discussed

متن کامل

An Algorithm based on Predicting the Interface in Phase Change Materials

Phase change materials are substances that absorb and release thermal energy during the process of melting and freezing. This characteristic makes phase change material (PCM)  a favourite choice to integrate it in buildings. Stephan problem including melting and solidification in PMC materials is an practical problem in many engineering processes. The position of the moving boundary, its veloci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical and Computer Modelling

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2007